PILOT LEARNING CALCULUS II ENGINEERING PROBLEM-SET 8 FALL 2019

- (1) Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues.
 - (a) $\{5, 8, 11, 14, 17, \dots\}$
 - (b) $\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots\}$
 - (c) $\{1, 0, -1, 0, 1, 0, -1, 0, \dots\}$
- (2) Determine whether or not the sequences a_n converge, and if so find the limit: (a) $a_n = \frac{8n-7}{2}$
 - (a) $a_n = \frac{8n-7}{7n+8}$ (b) $a_n = 10 - (0.99)^n$ (c) $a_n = \frac{(\ln n)^3}{n^2}$ (d) $a_n = \frac{n-e^n}{n+e^n}$ (e) $a_n = \cos \frac{n}{2}$ (f) $a_n = \frac{(2n-1)!}{(2n+1)!}$ (g) $a_n = 2^{-n} \cos \pi n$ (h) $a_n = \ln(2n^2+1) - \ln(n^2+1)$ (i) $a_n = \frac{e^n - e^{-n}}{e^{2n} - 1}$
- (3) A fish farmer has 5000 catfish in his pond. The number of catfish increases by 10% per month and the farmer harvests 300 catfish per month.
 - (a) Show that the catfish population P_n after n months is given recursively by

$$P_n = 1.1P_{n-1} - 300; \quad P_0 = 5000$$

- (b) By induction or otherwise, show that P_n is decreasing and bounded below by 3000. Apply the Monotonic Sequence Theorem to show that $\lim P_n$ exists.
- (c) Find $\lim_{n \to \infty} P_n$.
- (4) A sequence a_n is given by $a_1 = \sqrt{2}$; $a_n = \sqrt{2 + a_{n-1}}$
 - (a) By induction or otherwise, show that a_n is increasing and bounded above by 2. Apply the Monotonic Sequence Theorem to show that $\lim a_n$ exists.
 - (b) Find $\lim_{n \to \infty} a_n$

(5) Find the limit of the sequence $\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots\}$