PILOT LEARNING CALCULUS II ENGINEERING PROBLEM-SET 8
 FALL 2019

(1) Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues.
(a) $\{5,8,11,14,17, \ldots\}$
(b) $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\right\}$
(c) $\{1,0,-1,0,1,0,-1,0, \ldots\}$
(2) Determine whether or not the sequences a_{n} converge, and if so find the limit:
(a) $a_{n}=\frac{8 n-7}{7 n+8}$
(b) $a_{n}=10-(0.99)^{n}$
(c) $a_{n}=\frac{(\ln n)^{3}}{n^{2}}$
(d) $a_{n}=\frac{n-e^{n}}{n+e^{n}}$
(e) $a_{n}=\cos \frac{n}{2}$
(f) $a_{n}=\frac{(2 n-1)!}{(2 n+1)!}$
(g) $a_{n}=2^{-n} \cos \pi n$
(h) $a_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)$
(i) $a_{n}=\frac{e^{n}-e^{-n}}{e^{2 n}-1}$
(3) A fish farmer has 5000 catfish in his pond. The number of catfish increases by 10% per month and the farmer harvests 300 catfish per month.
(a) Show that the catfish population P_{n} after n months is given recursively by

$$
P_{n}=1.1 P_{n-1}-300 ; \quad P_{0}=5000
$$

(b) By induction or otherwise, show that P_{n} is decreasing and bounded below by 3000. Apply the Monotonic Sequence Theorem to show that $\lim _{n \rightarrow \infty} P_{n}$ exists.
(c) Find $\lim _{n \rightarrow \infty} P_{n}$.
(4) A sequence a_{n} is given by $a_{1}=\sqrt{2} ; a_{n}=\sqrt{2+a_{n-1}}$
(a) By induction or otherwise, show that a_{n} is increasing and bounded above by 2 . Apply the Monotonic Sequence Theorem to show that $\lim _{n \rightarrow \infty} a_{n}$ exists.
(b) Find $\lim _{n \rightarrow \infty} a_{n}$
(5) Find the limit of the sequence $\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \sqrt{2 \sqrt{2 \sqrt{2 \sqrt{2}}}}, \ldots\}$

